PPAR-α Agonist Fenofibrate Upregulates Tetrahydrobiopterin Level through Increasing the Expression of Guanosine 5′-Triphosphate Cyclohydrolase-I in Human Umbilical Vein Endothelial Cells

نویسندگان

  • Jinbo Liu
  • Changlin Lu
  • Fuwang Li
  • Haining Wang
  • Liyun He
  • Yanting Hao
  • Alex F. Chen
  • Huijie An
  • Xian Wang
  • Tianpei Hong
  • Guang Wang
چکیده

Tetrahydrobiopterin (BH4) is an essential cofactor for endothelial nitric oxide (NO) synthase. Guanosine 5'-triphosphate cyclohydrolase-I (GTPCH-I) is a key limiting enzyme for BH4 synthesis. In the present in vitro study, we investigated whether peroxisome proliferator-activated receptor α (PPAR-α) agonist fenofibrate could recouple eNOS by reversing low-expression of intracellular BH4 in endothelial cells and discussed the potential mechanisms. After human umbilical vein endothelial cells (HUVECs) were treated with lipopolysaccharide (LPS) for 24 hours, the levels of cellular eNOS, BH4 and cell supernatant NO were significantly reduced compared to control group. And the fluorescence intensity of intracellular ROS was significantly increased. But pretreated with fenofibrate (10 umol/L) for 2 hours before cells were induced by LPS, the levels of eNOS, NO, and BH4 were significantly raised compared to LPS treatment alone. ROS production was markedly reduced in fenofibrate group than LPS group. In addition, our results showed that the level of intracellular GTPCH-I detected by western blot was increased in a concentration-dependent manner after being treated with fenofibrate. These results suggested that fenofibrate might help protect endothelial function and against atherosclerosis by increasing level of BH4 and decreasing production of ROS through upregulating the level of intracellular GTPCH-I.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cytokines stimulate GTP cyclohydrolase I gene expression in cultured human umbilical vein endothelial cells.

In vascular endothelial cells, tetrahydrobiopterin serves as an essential cofactor required for enzymatic activity of nitric oxide synthase. GTP cyclohydrolase I is the rate-limiting enzyme in the biosynthesis of tetrahydrobiopterin. Previous studies have demonstrated that proinflammatory cytokines stimulate production of tetrahydrobiopterin in endothelial cells. Long-term regulation of GTP cyc...

متن کامل

cGMP inhibits GTP cyclohydrolase I activity and biosynthesis of tetrahydrobiopterin in human umbilical vein endothelial cells.

Tetrahydrobiopterin (BH4) acts as an essential cofactor for the enzymatic activity of nitric oxide (NO) synthases. Biosynthesis of the cofactor BH4 starts from GTP and requires 3 enzymatic steps, which include GTP cyclohydrolase I (GCH I) catalysis of the first and rate-limiting step. In this study we examined the effects of cGMP on GCH I activity in human umbilical vein endothelial cells under...

متن کامل

Fenofibrate plus Metformin Produces Cardioprotection in a Type 2 Diabetes and Acute Myocardial Infarction Model.

We investigated whether fenofibrate, metformin, and their combination generate cardioprotection in a rat model of type 2 diabetes (T2D) and acute myocardial infarction (AMI). Streptozotocin-induced diabetic- (DB-) rats received 14 days of either vehicle, fenofibrate, metformin, or their combination and immediately after underwent myocardial ischemia/reperfusion (I/R). Fenofibrate plus metformin...

متن کامل

Bacterial lipopolysaccharide down-regulates expression of GTP cyclohydrolase I feedback regulatory protein.

GTP cyclohydrolase I feedback regulatory protein (GFRP) is a 9.7-kDa protein regulating GTP cyclohydrolase I activity in dependence of tetrahydrobiopterin and phenylalanine concentrations, thus enabling stimulation of tetrahydrobiopterin biosynthesis by phenylalanine to ensure its efficient metabolism by phenylalanine hydroxylase. Here, we were interested in regulation of GFRP expression by pro...

متن کامل

Cytokine-stimulated GTP cyclohydrolase I expression in endothelial cells requires coordinated activation of nuclear factor-kappaB and Stat1/Stat3.

Endothelial production of nitric oxide (NO) is dependent on adequate cellular levels of tetrahydrobiopterin (BH4), an important cofactor for the nitric oxide synthases. Vascular diseases are often characterized by vessel wall inflammation and cytokine treatment of endothelial cells increases BH4 levels, in part through the induction of GTP cyclohydrolase I (GTPCH I), the rate-limiting enzyme fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2011  شماره 

صفحات  -

تاریخ انتشار 2011